INSTRUCTIONS AND PARTS LIST

SINGLE GIRDER UNDERHUNG CRANE BRIDGE KITS
1/2 THRU 10 TON HAND GEARED
AND
MOTOR DRIVEN

Page 2

CATALOG NUMBERS REQUIRED FOR OPTIONAL EQUIPMENT:

Electronic Acceleration Control - 115V Control					
Voltage	Motor HP	1 Motor		2 Motors	
		1 Speed	2 Speed	1 Speed	2 Speed
208	$1 / 2 \& 3 / 4$	904596	904598	913186	913186
-	$1 \& 1-1 / 2$	913186	913186	913186^{*}	913186^{*}
230	2	913186	913186	N/A	N/A
460	$1 / 2 \& 3 / 4$	904596	904598	913186	913186
	$1 \& 1-1 / 2$	904596	904598	913186	913186
	2	913186	913186	913186	913186

* For 2-1 HP motors only.

Applications other than shown require special engineering.

Main Collectors		Cross Conductors	
Pole and Bracket	901590	First 10' of Conducto	904025
Collectors - 30A	904101	Each Successive 10'	
100 A	904110	of Conductor	904026

Bridge Bumpers	Wheel Size
913117	$6-1 / 2^{\prime \prime}$ Dia.
913118	$8^{\prime \prime}$ Dia.

Ballast Resistors			
Voltage	Motor HP	For 1 Motor	For 2 Motors
$208-230$	$1 / 2 \& 3 / 4$	913181	913176
	1	913181	913176
	$1-1 / 2 ~ \& ~ 2 ~$	913176	913179
460	$1 / 2 \& 3 / 4$	913184	913177
	1	913184	913177
	$1-1 / 2 \& 2$	913177	913182
	$1 / 2 \& 3 / 4$	913184	913177
	1	913184	913177
	$1-1 / 2 \& 2$	913184	913183

Bridge Brake			
Voltage	Motor HP	Torque	Brake
$208-230 / 460$	$1 / 2$ thru 1	$0-3^{\prime} \#$	913314
			913316
575		$1-1 / 2$	$0-6 ' \#$
$208-230 / 460$			
575		913317	

NOTES
SIZES OF BRIDGESTHAT CAN BE BUILT WITHTHESE KITS (S BRIDGE BEAM)

(**) BEAM SIZES FORVARIOUS SPANS												
SPANS	(*) RATED LOAD INTONS											$\begin{gathered} \text { SPANS } \\ \text { TO } \\ \hline \end{gathered}$
TO	1/2	1	1-1/2	2	3	4	5	6	7-1/2	8	10	
Hand Geared Crane												
10ft.	S7×15.3	S7x15.3	S8×18.4	S10x25.4	S12x40.8	S12x40.8	S12x40.8	S18x54.7	S20x66	S18x54.7	S20x66	10ft.
12ft.	S7×15.3	S7×15.3	S10x25.4	S10x25.4	S 12×40.8	S 12×40.8	S18x54.7	S18x54.7	S20x66	S18x54.7	S20x66	12ft.
14ft.	S7×15.3	S7x15.3	S10x25.4	S12x31.8	S12x40.8	S12x40.8	S18x54.7	S18x54.7	S20x66	S20x66	S20x66	14ft.
16 ft .	S7x15.3	S8×18.4	S10x25.4	S12x31.8	S 12×40.8	S 12×40.8	S18x54.7	S20x66	S20x66	S20x66	S24×80	16 ft .
18ft.	S7×15.3	S10x25.4	S10x25.4	S 12×31.8	S 12×40.8	S 15×42.9	S18x54.7	S20x66	S24×80	S20x66	S24×80	18ft.
20ft.	S8×18.4	S10x25.4	S12x31.8	S 12×31.8	S12x40.8	S18x54.7	S18x54.7	S20x66	S24×80	S20x66	S24×80	20 ft .
22ft.	S10x25.4	S10x25.4	S12x31.8	S 12×40.8	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24×80	22ft.
24ft.	S10x25.4	S 12×31.8	S12x40.8	S 12×40.8	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24×100	24ft.
26ft.	S10x25.4	S12x31.8	S12x40.8	S15x42.9	S18x54.7	S20x66	S24×80	S24×80	S24×80	S24×90	S24x106	26 ft .
28ft.	S10x25.4	S12x40.8	S12x40.8	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24x106	S24x80w/C 10×15.3	S24x106	28ft.
30ft.	S12x31.8	S 12×40.8	S18854.7	S18x54.7	S20x66	S18x54.7w/C9x13.4	S24×80	S24*90	S24×106	S24x80w/C 10x15.3	S24×106	30ft.
32ft.	S 12×31.8	S12x40.8	S18x54.7	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S18854.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S24x80w/C 10x15.3	S24x106	S24x80w/C 10x15.3	S24x121	32ft.
34ft.	S12x40.8	S15x42.9	S18x54.7	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S24x80w/C 10x15.3	S24x106	S24x80w/C 10x15.3	S24x106 W/C 12x20.7	34ft.
36 ft .	S 12×40.8	S18x54.7	S15x42.9 W/C8x11.5	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S20x66w/C9x13.4	S24x80w/C 10x15.3	S24x121	S24x90w/C 10x15.3	S24x106 W/C 12×20.7	36 ft .
38 ft .	S 12×40.8	S18x54.7	S15x42.9w/C8x11.5	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 10 \times 15.3$	S18x54.7w/C 12×20.7	S20x66w/C9x13.4	S20x66w/C 10x15.3	S24x80w/C 10x15.3	S24x106 W/C 12x20.7	S24x100w/C 12×20.7	S24x106 W/C 12x20.7	38ft.
40ft.	S18x54.7	S15x42.9 $/$ / 8×11.5	S15x42.9w/C8x11.5	S18x54.7 W/C9x13.4	S20x66w/C9x13.4	S20x66w/C9x13.4	S24x80 W/C 10x15.3	S24x80w/C 10x15.3	S24x106w/C 12x20.7	S24x106w/C 12×20.7	S24x106 W/C 12x20.7	40ft.
42ft.	S18x54.7	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S18x54.7w/C9x13.4	S18x54.7 W/C9x13.4	S20x66w/C9x13.4	S20x66w/C9x13.4	S24x80 W/C 10x15.3	S24x80w/C 10x15.3	S24x106w/C 12×20.7	S24x106w/C 12x20.7	S24x106 W/C 12x20.7	42ft.
44ft.	S18x54.7	S $15 \times 42.9 \mathrm{w} / \mathrm{C8} \times 11.5$	S18x54.7w/C9x13.4	S 18×54.7 W/C9x13.4	S20x66w/C9x13.4	S20x66W/C 10x15.3	S24x80w/C 10×15.3	S24x80w/C 10x15.3	S24x106w/C 12×20.7	S24×106w/C 12×20.7	S24x121 W/C 12×20.7	44ft.
46 ft .	S15x42.9w/C8x11.5	S15x42.9 / $/ 88 \times 11.5$	S18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S24x80 W/C 10×15.3	S24×80 / / 10×15.3	S24x90 W/C12x20.7	S24x106w/C 12x20.7	S24x106w/C 12×20.7	S24x121 W/C 15x33.9	46 ft .
48ft.	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S 18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S $18 \times 54.7 \mathrm{~W} / \mathrm{C} 12 \times 20.7$	S20x66W/C 10x15.3	S24x80 W/C 10x15.3	S24x80 W/C12x20.7	S24x106 W/C 12x20.7	S24x106 W/C 12x20.7	S24x106w/C 12×20.7	--	48ft.
50ft.	S15x42.9w/C8x11.5	S18x54.7w/C9x13.4	S18854.7w/C9x13.4	S20x66w/C9x13.4	S24x80w/C 10×15.3	S24x80 W/C 10x15.3	S24x80 W/C 12x20.7	S24x106 W/C12x20.7	S24x106 W/C 12x20.7	S24x106w/C 12×20.7	--	50ft.
52ft.	S18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S20x66w/C9x13.4	S24*80W/C 10×15.3	S24x80 W/C 12x20.7	S24x80w/C 12x20.7	S24x106w/C 12×20.7	S24x106w/C 15×33.9	S24x106w/C 15×40	--	52ft.
54ft.	S18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S20x66w/C9x13.4	S24x80w/C 10x15.3	S24x80 W/C 12x20.7	S24x80w/C 15×33.9	S24x106w/C 12×20.7	S24x 21 W/C 15x40	S24x 21 W/C 18×45.8	--	54ft.
56ft.	S18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S24x80w/C 10×15.3	S24x80w/C 12×20.7	S24x80w/C 12x20.7	S24x106W/C 12x20.7	S24x106w/C 15x33.9	--	--	--	56 ft .
58 ft .	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S20x66w/C 12x20.7	S24x80 w/C 10x15.3	S24x80w/C 12×20.7	S24x80w/C 15×33.9	S24x106w/C12x20.7	S24×106W/C 15×40	--	--	--	58 ft .
60ft.	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S24x80 W/C 10×15.3	S24x80w/C 10x15.3	S24x80 W/C 12x20.7	S24x106W/C 12x20.7	S24x106W/C15x33.9	S24×121 W/C 15x50	--	--	--	60ft.
Motor Driven Crane - Individual Drive												
10ft.	S7x15.3	S7x15.3	S10x25.4	S10x25.4	S12x40.8	S12x40.8	S12x40.8	S18x54.7	S20x66	S20x66	S20x66	10ft.
12tt.	S7×15.3	S7×15.3	S10x25.4	S12x31.8	S12x40.8	S12x40.8	S18x54.7	S20x66	S20x66	S20x66	S24×80	12ft.
14ft.	S7×15.3	S7×15.3	S10x25.4	S12x31.8	S12x40.8	S12x40.8	S18x54.7	S20x66	S24×80	S20x66	S24×80	14 ft .
16 ft .	S7x15.3	S8×18.4	S10x25.4	S12x31.8	S 12×40.8	S18x54.7	S18x54.7	S20x66	S24×80	S20x66	S24×80	16 ft .
18ft.	S8×18.4	S10x25.4	S12x31.8	S12x31.8	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24*90	18ft.
20ft.	S8×18.4	S10x25.4	S 12×31.8	S 12×40.8	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24×106	20 ft .
22ft.	S10x25.4	S12x31.8	S 12×40.8	S 12×40.8	S18x54.7	S20x66	S20x66	S24×80	S24x80 W/C 10x15.3	S24×80	S24×106	22 ft .
24 ft .	S10x25.4	S 12×31.8	S 12×40.8	S18×54.7	S20x66	S20x66	S24×80	S24×80	S24x80 W/C 10x15.3	S24x80w/C 10x15.3	S24×106	24ft.
26 ft .	S10x25.4	S 12×40.8	S12x31.8w/C8x11.5	S18x54.7	S20x66	S18x54.7w/C9x13.4	S24×80	S20x66w/C9x 13.4	S24x80w/C 12x20.7	S24x80w/C 10x15.3	S24x106	26 ft .
28ft.	S 12×31.8	S 12×40.8	S $12 \times 31.8 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S $12 \times 40.8 \mathrm{w} / \mathrm{C8} \mathrm{\times 11.5}$	S18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S20x66w/C 12x20.7	S24x80w/C 15x33.9	S24x80w/C 10x15.3	S24x121	28 ft .
30 ft .	S 12×31.8	S 12×40.8	S $12 \times 31.8 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S $12 \times 40.8 \mathrm{w} / \mathrm{C8} \mathrm{\times 11.5}$	S18854.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S24x80w/C 10x15.3	S24x106w/C 12x20.7	S24x80w/C 10×15.3	S24x106w/C 12x20.7	30 ft .
32ft.	S 12×40.8	S $12 \times 31.8 \mathrm{w} / \mathrm{C8} \times 1.5$	S $12 \times 40.8 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S $15 \times 42.9 \mathrm{~W} / \mathrm{C} 8 \times 11.5$	S18x54.7w/C9x13.4	S18x54.7w/C 10x15.3	S20x66w/C9x13.4	S24x80w/C10×15.3	S24x106W/C12x20.7	S24x80w/C 12x20.7	S24x106w/C 12×20.7	32 tt .
34ft.	S12x40.8	S12x31.8w/C8x11.5	S15x42.9w/C8x11.5	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S20x66w/C9x13.4	S24x80w/C10x15.3	S24x106 W/C12x20.7	S24x90w/C 12x20.7	S24x106w/C 12×20.7	34ft.
36ft.	S12x40.8	S12x31.8w/C9x13.4	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S15x42.9w/C8x11.5	S18x54.7w/C 12x20.7	S20x66w/C9x13.4	S20x66 W/C12x20.7	S24x80 W/C 10x15.3	S24x106 W/C 12x20.7	S24x90w/C 15x33.9	S24x106w/C 12×20.7	36 ft .
38ft.	S12x31.8w/C8x11.5	S $12 \times 40.8 \mathrm{w} / \mathrm{C9} 913.4$	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 10 \times 15.3$	S20x66w/C9x13.4	S20x66w/C9x13.4	S24x80 W/C 10×15.3	S24x80w/C10x15.3	S24x106w/C 12×20.7	S24x106w/C 12x20.7	S24x106WCC 12x20.7	38ft.
40ft.	S12x31.8w/C8x11.5	S15x42.9 / $/ 88 \times 11.5$	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S18x54.7w/C9x13.4	S20x66w/C9x13.4	S20x66W/C 10x15.3	S24×80 / / 10×15.3	S24x80 W/C12×20.7	S24x106w/C 12×20.7	S24x106w/C 12×20.7	S24x106 W/C 15x33.9	40ft.
42ft.	S12x40.8w/C8x11.5	S $15 \times 42.9 \mathrm{w} / \mathrm{C8} \mathrm{\times 11.5}$	S18x54.7w/C9x13.4	S 18x54.7w/C9x13.4	S20x66w/C9x13.4	S20x66 W/C 10x15.3	S24x80 W/C 10×15.3	S24x90w/C 12x20.7	S24x106 W/C 12×20.7	S24x106 W/C 12×20.7	S24x106w/C 15x40	42tt.

Page 4
SIZES OF BRIDGES THAT CAN BE BUILT WITHTHESE KITS (S BRIDGE BEAM)

(**) BEAM SIZES FOR VARIOUS SPANS												
$\begin{gathered} \hline \text { SPANS } \\ \text { TO } \end{gathered}$	(*) RATED LOAD INTONS											$\begin{gathered} \text { SPANS } \\ \text { TO } \end{gathered}$
	1/2	1	1-1/2	2	3	4	5	6	7-1/2	8	10	
Motor Driven Crane - Individual Drive (Continued)												
44ft.	S15x42.9w/C8x11.5	S15x42.9w/C8x11.5	S18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66w/C 10x15.3	S20x66 W/C 12x20.7	S24x80w/C12x20.7	S24x100w/C12x20.7	S24x106w/C 12x20.7	S24x106w/C12x20.7	S24x121 w/C 15x40	44ft.
46 ft .	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S18x54.7w/C9x13.4	S18x54.7w/C9x13.4	S20x66W/C 12x20.7	S24x80 w/C 10x15.3	S24x80w/C 12x20.7	S24x106w/C 12x20.7	S24x106w/C 12x20.7	S24x106w/C 12×20.7	--	46 ft .
48 ft .	S $15 \times 42.9 \mathrm{w} / \mathrm{C} 8 \times 11.5$	S18x54.7w/C9x13.4	S 18x54.7w/C9x13.4	S $18 \times 54.7 \mathrm{w} / \mathrm{C} 12 \times 20.7$	S20x66w/C 12x20.7	S24x80 w/C 12x20.7	S24x90w/C 12x20.7	S24×106w/C 12x20.7	S24x106w/C 15x33.9	S24x106w/C 15x33.9	--	48 ft .
50ft.	S15x42.9w/C8x11.5	S18x54.7w/C9x13.4	S 18x54.7w/C 10x15.3	S20x66w/C 10x15.3	S24x80w/C 10x15.3	S24x80w/C 12x20.7	S24x80 w/ 15x33.9	S24×106w/C 12x20.7	S24x106w/C 15x33.9	S24x106w/C 15x33.9	--	50ft.
52ft.	S18x54.7w/C9x13.4	S 18x54.7 w/C9x13.4	S20x66w/C9x13.4	S20x66w/C 10x15.3	S24x80w/C 12x20.7	S24x90w/C 12x20.7	S24x80 w/C15x33.9	S24x106w/C 12x20.7	S24x121 W/C 15x33.9	S24×106w/C 15x40	--	52ft.
54ft.	S18x54.7w/C9x13.4	S18x54.7 w/C9x13.4	S20x66w/C 10x15.3	S20x66w/C 12x20.7	S24x80w/C 12x20.7	S24x80 w/C 15x33.9	S24x90 W/C 15x33.9	S24x106w/C 15x33.9	S24x121 W/C 18x58	S24x121 w/C 18x45.8	--	54ft.
56 ft .	S18x54.7w/C9x13.4	S 18x54.7 w/C9x13.4	S20x66w/C 12x20.7	S24x80WCC 10x15.3	S24x80w/C 12x20.7	S24x80w/C 15x33.9	S24x100w/C 15x33.9	S24×106w/C 15x33.9	--	--	--	56 ft .
58ft.	S $18 \times 54.7 \mathrm{w} / \mathrm{C9x} 13.4$	S20x66w/C9x13.4	S20x66 W/C 12x20.7	S24x80w/C 12x20.7	S24x80w/C 15×33.9	S24×80w/C 15x33.9	S24x106 W/C 15x33.9	S24×106w/C 15x40	--	--	--	58 ft .
60 ft .	S18x54.7w/C9x13.4	S20x66w/C 10x15.3	S24x80w/C 12x20.7	S24x80w/C 12x20.7	S24x80 W/C 15x33.9	S24x90w/C 15×40	S24x106w/C 15x33.9	S24×121 W/C 15×50	--	--	--	60ft.
Motor Driven Crane-Center Drive												
10ft.	S7×15.3	S7x15.3	S10x25.4	S10x25.4	S12x40.8	S12x40.8	S18x54.7	S18x54.7	S20x66	S20x66	S20x66	10ft.
12ft.	S7×15.3	S7×15.3	S10x25.4	S12x31.8	S12x40.8	S12x40.8	S18x54.7	S20x66	S20x66	S20x66	S24×80	12ft.
14ft.	S7×15.3	S7×15.3	S10x25.4	S12x31.8	S12x40.8	S12x40.8	S18x54.7	S20x66	S24×80	S20x66	S24x80	14ft.
16 ft .	S7×15.3	S8×18.4	S10x25.4	S12x31.8	S12x40.8	S18x54.7	S18x54.7	S20x66	S24×80	S20x66	S24×80	16 ft .
18ft.	S8×18.4	S10x25.4	S12x31.8	S12x31.8	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24×90	18ft.
20ft.	S8x18.4	S10x25.4	S12x31.8	S12x40.8	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24x106	20ft.
22ft.	S10x25.4	S10x25.4	S12x31.8	S12x40.8	S18x54.7	S18x54.7	S20x66	S24×80	S24x106	S24×80	S24x106	22ft.
24ft.	S10x25.4	S10x25.4	S12x31.8	S12x40.8	S18x54.7	S18x54.7	S20x66	S24×80	S24x106	S24×80	S24x106	24ft.
26 ft .	S10x25.4	S12x31.8	S12x31.8	S12x40.8	S18x54.7	S20x66	S20x66	S24×80	S24x106	S24*90	S24x106	26 ft .
28ft.	S10x25.4	S 12×31.8	S12x40.8	S15x42.9	S 18×54.7	S20x66	S24×80	S24×80	S24x106	S24x106	S24x106	28 ft .
30 ft .	S12x31.8	S12x31.8	S15x42.9	S15x42.9	S20x66	S20x66	S24×80	S24×80	S24x106	S24x106	S24x106	30tt.
32ft.	S12x31.8	S12x40.8	S15x42.9	S15x42.9	S20x66	S20x66	S24×80	S24×80	S24×106	S24×106	S24x106	32ft.
34ft.	S 12×31.8	S15x42.9	S15x42.9	S18x54.7	S20x66	S20x66	S24×80	S24x100	S24×106	S24x106	S24x121	34 ft .
36 ft .	S12x40.8	S15x42.9	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24x106	S24x106	S24x106	S24x106 W/C 12x20.7	36 ft .
38ft.	S15x42.9	S15x42.9	S18x54.7	S18x54.7	S20x66	S24×80	S24×80	S24x106	S24x106	S24x106	S24x106w/C 12x20.7	38 ft .
40ft.	S15x42.9	S15x42.9	S18x54.7	S18x54.7	S20x66	S24×80	S24×80	S24×106	S24x121	S24x106	S24x106 W/C 15x33.9	40ft.
42ft.	S15x42.9	S18x54.7	S18x54.7	S18x54.7	S20x66	S24×80	S24x100	S24x106	S24x106w/C 12x20.7	S24x106	S24x121 w/C15x33.9	42ft.
44ft.	S15x42.9	S18x54.7	S18x54.7	S20x66	S24×80	S24×80	S24×106	S24x106	S24×106w/C 12x20.7	S24x121	S24x121 w/C18x42.7	44ft.
46 ft .	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24x106	S24x106	S24×106w/C 12x20.7	S24x106w/C 12x20.7	--	46 ft .
48ft.	S18x54.7	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24x106	S24×106	S24×106w/C 15x33.9	S24x106w/C 12×20.7	--	48ft.
50ft.	S18x54.7	S18x54.7	S20x66	S24×80	S24×80	S24×80	S24x106	S24x106	S24×106w/C 15x40	S24x106w/C 15x33.9	--	50ft.
52ft.	S18x54.7	S20x66	S20x66	S24×80	S24×80	S24×90	S24x106	S24x121	S24×121w/C 15x40	S24×106w/C 15x40	--	52ft.
54ft.	S18x54.7	S20x66	S24×80	S24×80	S24×80	S24×106	S24×121	S24x106w/C 12x20.7	--	S24×121 W/C 15×50	--	54ft.
56 ft .	S20x66	S20x66	S24×80	S24×80	S24x100	S24x106	S24x106w/C 12x20.7	S24×106w/C 15x33.9	--	--	--	56 ft .
58ft.	S20x66	S24×80	S24×80	S24×80	S24x106	S24×121	S24x106w/C 12x20.7	S24×106w/C 15×50	--	--	--	58 ft .
60ft.	S20x66	S24×80	S24×80	S24×80	S24x106	S24x106 W/C 12x20.7	S24×106w/C 15×40	S24×121w/C 18x58	--	--	--	60ft.

SIZES OF BRIDGESTHAT CAN BE BUILT WITHTHESE KITS (W BRIDGE BEAM)

 SPANS (**) BEAM SIZES FOR VARIOUS SPANS												
												$\begin{gathered} \text { SPANS } \\ \text { TO } \end{gathered}$
TO	1/2	1	1-1/2	2	3	4	5	6	7-1/2	8	10	
Hand Geared Crane												
10ft.	W8×15	W8x15	W10x19	W12x22	W10x30	W14×38	W18×46	W16*50	W18×65	W18×65	W 18x71	10ft.
12ft.	W8×15	W8×15	W10×19	W12x22	W12x35	W18×40	W 18×46	W18×55	W18×65	W18×65	W21×83	12ft.
14ft.	W8×15	W8x15	W10x19	W10x26	W12×35	W18×40	W18×46	W16x57	W18x65	W18x71	W21×83	14ft.
16 ft .	W8×15	W8x18	W10x26	W14×26	W14×38	W16x45	W16x50	W16x57	W18x71	W18x71	W21×83	16 ft .
18ft.	W8x18	W8x18	W10x26	W10×30	W18x40	W16x45	W18×55	W16x57	W18x71	W18x71	W21x93	18ft.
20 ft .	W8×18	W8221	W10x26	W10×30	W18×40	W18×46	W16x57	W18×60	W18x71	W21×83	W21x93	20ft.
22ft.	W8×18	W10x26	W10×30	W14×34	W 12x45	W16x50	W16x57	W18x65	W21x83	W21×83	W21×93	22ft.
24ft.	W8x21	W10x26	W10×30	W 12×35	W16x45	W16x50	W16x57	W18x65	W21x83	W21×83	W21x93	24 tt .
26 ft .	W10x22	W10x30	W 12×35	W14×38	W 14×48	W14×53	W18×60	W18x65	W21x83	W21×83	W27x114	26ft.
28ft.	W10x26	W10x30	W14×38	W 12×40	W 14×48	W16x57	W18×65	W18x71	W21×93	W21×93	W27x114	28ft.
30ft.	W10x26	W14×34	W 12×40	W14×43	W14×53	W 18865	W18x71	W14×82	W21x93	W21×93	W27x114	30tt.
32 ft .	W10×30	W 12×35	W 14×43	W14×48	W 18×60	W16x67	W16x77	W21*83	W21x93	W24×94	W27x114	32ft.
34ft.	W12×30	W14×38	W14×48	W14×48	W18×65	W16x67	W16x77	W16x89	W16x100	W27x114	W27x114	34 ft .
36ft.	W14×34	W12x40	W14×48	W14x53	W16x67	W16x77	W16×89	W24×94	W27x114	W27x114	W30×124	36ft.
38 ft .	W12×35	W14×43	W14×53	W14×61	W16x67	W16x77	W16889	W27x102	W27x114	W30×124	W24×131	38ft.
40ft.	W 12×40	W 14×48	W18×60	W18×65	W16x77	W18x60w/C 12x20.7	W18x71 W/C 12×20.7	W21x83 W/C 12x20.7	W30×124	W30×132	W21×132	40ft.
42ft.	W14×43	W14×48	W18×65	W16x67	W16x77	W18x65w/C 12x20.7	W21x73w/C 12×20.7	W21x83 W/C 12x20.7	W30×132	W30x148	W24×146	42ft.
44ft.	W14×43	W14×53	W16x67	W16x67	W18x60w/C12x20.7	W 18x71w/C 12x20.7	W21x83W/C 12x20.7	W21x83W/C 12×20.7	W 30×148	W30x148	W24×146	44ft.
46 ft .	W14×48	W 18×60	W16x67	W16x77	W 18x65w/C12x20.7	W21x73w/C 12x20.7	W21x83W/C 12x20.7	W21x93w/C 12x20.7	W 30×148	W30×148	W24×146	46 ft .
48ft.	W14×48	W 18x65	W16x67	W18x60w/C 12x20.7	W18x71w/C 12x20.7	W21x73w/C 12x20.7	W21x83W/C 12x20.7	W21x93w/C 12x20.7	W30×148	W27x114W/C 15×33.9	W24×162	48tt.
50ft.	W16x57	W 18x71	W16x77	W18x60w/C 12x20.7	W21x73w/C 12x20.7	W21x73w/C 12x20.7	W24x84W/C 12×20.7	W24x94w/C 12×20.7	W27x114w/C 15x33.9	W27x114W/C 15x33.9	W24×162	50ft.
52ft.	W 18×60	W21×73	W 18860w/C 12×20.7	W18x65w/C 12x20.7	W21x73w/C12x20.7	W21×83w/C 12x20.7	W24x84W/C 12x20.7	W24x94W/C 12x20.7	W27x114w/C 15*33.9	W27x114W/C15x33.9	W24×162	52ft.
54ft.	W 18865	W21×83	W 18860w/C 12×20.7	W21x73w/C 12x20.7	W21x73W/C12x20.7	W24x84w/C 12x20.7	W24x84W/C 12×20.7	W24x94W/C 12x20.7	W27x114w/C 15x33.9	W $30 \times 124 \mathrm{~W} / \mathrm{C} 15 \times 33.9$	W30x148w/C 15x33.9	54tt.
56 ft .	W18871	W21×83	W 18x71w/C 12x20.7	W21x73w/C 12x20.7	W21×83W/C12x20.7	W24x84w/C 12x20.7	W24x94W/C 12×20.7	W24x94w/C 15×33.9	W30x124w/C 15x33.9	W30x124W/C 15×33.9	W $30 \times 148 \mathrm{~W} / \mathrm{C} 15 \times 33.9$	56 ft .
58ft.	W21×83	W 18x60w/C 12x20.7	W21x73w/C12x20.7	W21x73W/C12x20.7	W24×84w/C 12x20.7	W24x84w/C12x20.7	W24x94w/C 15x33.9	W27x102w/C 15x33.9	W30x124w/C 15x33.9	W30x124W/C 15x33.9	W30x148w/C 15x33.9	58ft.
60ft.	W21×83	W18×65w/C 12×20.7	W21x73W/C 12x20.7	W21x73w/C12x20.7	W24×84W/C 12×20.7	W24x94w/C12x20.7	W27x102w/C 15x33.9	W27x102W/C 15×33.9	W30x124w/C 15x33.9	W $30 \times 132 \mathrm{~W} / \mathrm{C} 15 \times 33.9$	W $30 \times 148 \mathrm{~W} / \mathrm{C} 15 \times 33.9$	60ft.
Motor Driven Crane - Individual Drive												
10ft.	W8x15	W8×15	W10x19	W12x22	W12×35	W18×40	W 18×46	W14x53	W18x65	W18×65	W14*82	10ft.
12ft.	W8×15	W8x15	W10x19	W10×26	W 12×35	W 18×40	W18×46	W16*57	W 18×65	W18×71	W21×83	12ft.
14ft.	W8×15	W8x18	W10x26	W14×26	W14×38	W10x45	W16×50	W16x57	W18x71	W18x71	W16889	14ft.
16ft.	W8×15	W8x18	W10x26	W10x30	W18×40	W16x45	W14×53	W16x57	W18x71	W18x71	W21x93	16 ft .
18ft.	W8×18	W8x21	W10x26	W10×30	W18×40	W18×46	W16x57	W18×65	W14*82	W21×83	W21x93	18tt.
20ft.	W8×18	W8x21	W10x30	W10×30	W10x45	W12×50	W16x57	W18×65	W21×83	W21×83	W21×93	20ft.
22ft.	W8x21	W10x26	W10×30	W 12×35	W16x45	W16x50	W16x57	W18x65	W21x83	W21×83	W 16×100	22ft.
24ft.	W8x21	W10x26	W14×34	W14×38	W14×48	W14x53	W18×65	W18x71	W21x93	W21×93	W27x114	24ft.
26 ft .	W10x26	W10×30	W 12×35	W 12×40	W 12×50	W16x57	W18×65	W18x71	W21x93	W21×93	W27x114	26 ft .
28ft.	W10x26	W10x33	W 12×40	W12x40	W14×53	W 18x65	W18x71	W14*82	W21x93	W21×93	W27x114	28ft.
30ft.	W10×30	W12x35	W 12×40	W 12×45	W14×53	W16x67	W14x74	W16889	W24×94	W16x100	W18×119	30ft.
32ft.	W10×30	W14×38	W12x45	W14×48	W14×61	W16x67	W16x77	W16x89	W16x100	W27x114	W30x124	32tt.
34ft.	W14×34	W 12×40	W14×48	W14*53	W16x67	W16x67	W16889	W16889	W27x114	W27x114	W24×131	34ft.
36 ft .	W12×35	W12×40	W14*53	W14x61	W16x67	W16x77	W16889	W16x100	W30×124	W30x132	W21x132	36 ft .
38 ft .	W 12×40	W12x45	W 14×53	W14×61	W16x77	W16x77	W16889	W21x83W/C 12x20.7	W 30×132	W30x132	W24×146	38tt.
40ft.	W 12×40	W14x48	W 14×61	W16x67	W16x77	W16889	W 16×100	W $21 \times 83 \mathrm{~W} / \mathrm{C} 12 \times 20.7$	W30x148	W30×148	W 24×146	40ft.
42ft.	W14×43	W14×53	W16x67	W16x67	W16x77	W18x65w/C 12x20.7	W21x83w/C 12×20.7	W21x93w/C 12x20.7	W30×148	W30×148	W24×146	42ft.

Page 6
SIZES OF BRIDGESTHAT CAN BE BUILT WITHTHESE KITS (W BRIDGE BEAM)

(**) BEAM SIZES FOR VARIOUS SPANS												
SPANS	(*) RATED LOAD INTONS											$\begin{gathered} \hline \text { SPANS } \\ \text { TO } \\ \hline \end{gathered}$
TO	1/2	1	1-1/2	2	3	4	5	6	7-1/2	8	10	
Motor Driven Crane - Individual Drive (Continued)												
44ft.	W14×48	W14×53	W16x67	W16x77	W18x60w/C 12×20.7	W18x71w/C 12x20.7	W21x83 W/C 12x20.7	W21x93 W/C 12x20.7	W30×148	W27x114w/C 15x33.9	W24×146	44ft.
46 ft .	W14×48	W 18x65	W16x67	W16x77	W18x65w/C 12x20.7	W21x73w/C 12x20.7	W21x83w/C 12x20.7	W21x93w/C 12x20.7	W27x114w/C 15x33.9	W27x114w/C 15x33.9	W24×162	46 ft .
48ft.	W14x53	W18x71	W16x77	W18x60w/C 12x20.7	W18x71w/C 12x20.7	W21x73w/C12x20.7	W21x83W/C 12x20.7	W21x93w/C 12x20.7	W27x114w/C 15x33.9	W27x114w/C 15x33.9	W24×162	48ft.
50ft.	W18x65	W16x45w/C 12x20.7	W16x77	W18x60w/C 12x20.7	W21x73w/C12x20.7	W21x73w/C 12x20.7	W24x84W/C 12x20.7	W24x94w/C 12x20.7	W27x114w/C 15x33.9	W27x114W/C 18x42.7	W30x148wC 15×33.9	50ft.
52ft.	W 18x71	W16x50w/C 12x20.7	W18x60w/C12x20.7	W 18x65w/C 12x20.7	W21x73w/C 12x20.7	W21x83w/C 12x20.7	W24x94w/C 12x20.7	W24x94w/C 15x33.9	W27x114w/C 18×42.7	W30x124W/C 15x33.9	W30x148wC 15x33.9	52tt.
54ft.	W16x45w/C 12x20.7	W16x57w/C 12x20.7	W18x60w/C 12x20.7	W21x73w/C12x20.7	W21x73w/C 12x20.7	W24x84W/C 12x20.7	W24x94w/C 12x20.7	W24x94w/C15x33.9	W30×124w/C 15x33.9	W30x124W/C 15x33.9	W30x148wC 15x33.9	54ft.
56ft.	W16x45w/C 12x20.7	W 18x60w/C 12x20.7	W18x71 w/C 12x20.7	W21x73w/C 12x20.7	W21x83w/C 12x20.7	W24x84w/C 12x20.7	W24x94w/C 15x33.9	W27x102w/C 15x33.9	W30x124w/C 15x33.9	W30x132w/C 15x33.9	W30x148wC 15x33.9	56 ft .
58ft.	W16x57w/C 12x20.7	W 18x60w/C 12x20.7	W21x73W/C 12x20.7	W21x73w/C 12x20.7	W24×84w/C 12x20.7	W24x94w/C 12x20.7	W24x94W/C 15×33.9	W27x102w/C 18x42.7	W30x132w/C 15x33.9	W30x132w/C 15x33.9	W30x148w/C 15x33.9	58ft.
60ft.	W18x60w/C 12x20.7	W 18x65w/C 12x20.7	W21x73w/C 12x20.7	W21x73w/C12x20.7	W24×84w/C 12x20.7	W24x84w/C 15x33.9	W27x102w/C 15x33.9	W27x114w/C 15x33.9	W30x132w/C 15x33.9	W $30 \times 132 \mathrm{~W} / \mathrm{C} 15 \times 33.9$	W30x148w/C 15x33.9	60ft.
Motor Driven Crane - Center Drive												
10ft.	W8×15	W8x15	W10x19	W12x22	W12x35	W18×40	W 18x46	W14×53	W18x65	W18x65	W14×82	10ft.
12ft.	W8×15	W8×15	W12x22	W10x26	W12x35	W10x45	W 18x46	W16x57	W18×65	W18x71	W21×83	12ft.
14ft.	W8×15	W10x17	W12x22	W14×26	W14×38	W10x45	W16x50	W16x57	W18×71	W18×71	W16x89	14ft.
16ft.	W8×15	W8x18	W12x22	W10x30	W18x40	W16x45	W 18×55	W16x57	W18×71	W18x71	W21x93	16 ft .
18ft.	W8×15	W10x19	W10x26	W10×30	W 18x40	W 18×46	W16x57	W18×65	W14×82	W21×83	W21x93	18ft.
20ft.	W10x15	W10x19	W10x26	W10x30	W10x45	W 18x46	W16x57	W 18x65	W21×83	W21×83	W21x93	20ft.
22ft.	W10x15	W10×19	W10x30	W14×34	W16x45	W16x50	W16x57	W18×65	W21×83	W21×83	W27x114	22tt.
24ft.	W 12×16	W10x22	W 12×30	W12×35	W 18x46	W14×53	W18×65	W18x71	W21x93	W21x93	W27x114	24tt.
26 ft .	W12x16	W12x22	W16×31	W12×35	W 18x46	W 18×55	W18×65	W18x71	W21×93	W21×93	W27x114	26 ft .
28ft.	W 12x19	W12x26	W16x31	W14×38	W16x50	W16x57	W18×65	W14×82	W21×93	W21×93	W27x114	28ft.
30ft.	W12x19	W12x26	W14×34	W14×38	W16x50	W16x57	W18x71	W21×83	W21×93	W21×93	W 18×119	30ft.
32ft.	W12x22	W14x26	W16×36	W16x40	W 18x55	W 18×60	W18x71	W21×83	W16x100	W27x114	W30x124	32ft.
34ft.	W14*22	W16x26	W16x40	W 18x40	W18×55	W18×65	W18x71	W21×83	W27x114	W27×114	W21×132	34ft.
36ft.	W14×26	W16x31	W16x40	W 18x40	W21×57	W18×65	W21x83	W21×93	W27x114	W27x114	W21×132	36ft.
38ft.	W14×26	W16×31	W16x40	W 18x46	W21×57	W18x65	W21×83	W21×93	W27x114	W27x114	W30x132	38ft.
40ft.	W16x26	W18×35	W18x40	W 18x46	W18×60	W21×68	W21×83	W21×93	W27x114	W27x114	W30×132	40ft.
42ft.	W16x31	W18×35	W21×44	W 18x50	W21×68	W21x73	W21×83	W21×93	W27x114	W27x114	W33x141	42ft.
44ft.	W16x31	W18×35	W18×50	W21×50	W21×68	W21x73	W21×83	W24×94	W30x24	W30×124	W24x146	44ft.
46ft.	W18×35	W18×40	W21×50	W24×55	W21×68	W24x76	W21×93	W24×94	W30x124	W30×124	W24×146	46ft.
48ft.	W18×35	W21×44	W21×50	W21×57	W21x73	W24×84	W24x94	W27x102	W30x124	W30×132	W30×148	48ft.
50ft.	W18×40	W21x44	W24×55	W21×62	W24×76	W24×84	W24×94	W27x114	W30×132	W30×132	W30×148	50ft.
52ft.	W18×40	W21x44	W24×55	W24462	W24×76	W24×84	W24x94	W27x114	W30x132	W30×132	W30×148	52tt.
54ft.	W21x44	W21×50	W24x55	W24×62	W24x76	W24x94	W27x102	W27x114	W30x132	W30x132	W30x148	54ft.
56ft.	W21x44	W24x55	W24x55	W24×68	W24×84	W24*94	W27×102	W27x114	W30×132	W30×148	W30×148	56ft.
58ft.	W21x44	W24×55	W24×62	W24×68	W27x84	W27x94	W27x102	W27x114	W30x148	W30×148	W33×169	58ft.
60ft.	W21×50	W24×55	W24468	W24×76	W27x84	W27x94	W27x114	W30×124	W30×148	W30×148	W33x169	60ft.

500poundsfor $1 / 2$ and 1 ton hoists
1100 poundsfor $1-1 / 2$ and 2 ton hoists 1600poundsfor3and4 ton hoists
2000poundsfor 5and6 ton hoists
3000 poundsfor $7-1 / 2$ and8ton hoists 3200 poundsfor 10tonhoists
BridgedesignedinaccordancewithCMAASpecificationNo.74,Revised 1987,assumingShaw-Boxtrolleys.

Page 7

TOBUILD UNDERHUNG CRANE BRIDGES

THE INFORMATION CONTAINED IN THIS MANUAL IS FOR INFORMATIONAL PURPOSES ONLY AND COLUMBUS MCKINNON CORPORATION DOES NOT WARRANT OR OTHERWISE GUARANTEE (IMPLIEDLY OR EXPRESSLY) ANYTHING OTHER THAN THE COMPONENTS THAT COLUMBUS MCKINNON CORPORATION MANUFACTURES AND ASSUMES NO LEGAL RESPONSIBILITY (INCLUDING, BUT NOT LIMITED TO CONSEQUENTIAL DAMAGES) FOR INFORMATION CONTAINED INTHIS MANUAL.

GENERAL

The assembly and manufacturing instructions including the parts lists detailed in this manual are for use in conjunction with the manufacturers components identified by Catalog numbers listed under the THREE types of drives covered by this manual and as shown on pages 2 and 3 .

The crane builder must check for compliance with all local, state and national codes. On a hand powered crane with an electric hoist, a fused safety disconnect switch should be provided mounted on the bridge near the main collectors. Crane wiring should be done by a licensed electrician and be in accordance with the National Electric Code.

The crane bridges described in this manual are intended for normal indoor service. Bridges to be used for outdoor or unusual service require special consideration.

This manual illustrates specific configurations for the range of coverage shown, specifically for 10 ft . thru 60 ft . span and up to and including 10 ton capacity. Minor deviations to the configurations shown (such as shaft bearing spacing, shaft lengths, etc.) may be made providing that any changes and/or alterations to those shown, be performed only by a properly qualified person. COLUMBUS MCKINNON CORPORATION accepts no responsibility for any altered bridge configurations.

The proper catalog numbers must be ordered to build the required crane. Five catalog numbers are required to build a hand geared crane. Five catalog numbers are required for an individual drive crane and seven catalog numbers are required for the center drive crane. Additional options for additional equipment are available and listed by catalog numbers on pages 2 and 3 .

Material listed by catalog numbers on pages 2 and 3 are applicable only to crane configurations outlined in this manual, specifically limited to a maximum rated load of 10 ton and a maximum span of 60 ft .

Cataloged end trucks listed on page 2 will accommodate the beam sizes listed below. The crane builder must determine that the runway beam flange selected will support the resulting maximum wheel load.

The 5 ton end trucks have $6-1 / 2^{\prime \prime}$ diameter solid steel wheels (maximum allowable load is 9000 pounds per pair of wheels). 10 ton end trucks have 8 " diameter solid steel
wheels (maximum allowable load is 18000 pounds per pair of wheels).

Rated Load (thru)	Minimum Runway Beam Flange Width	Maximum Runway Beam Flange Width	Minimum Beam	Maximum Flange Thickness
5 Ton	$4-5 / 8$	11	$\mathrm{~S} 10 \times 25.4$	$1^{\prime \prime}$
10 Ton	5	12	$\mathrm{~S} 12 \times 31.8$	$1-3 / 8^{\prime \prime}$

RUNWAYS: Runway beams must be properly designed to support bridge, hoist, trolley and rated load. Runway beams must be level and parallel within $\pm 1 / 8^{\prime \prime}$. Runway stops must be positioned to contact both ends of the crane simultaneously.

MATERIAL TO BE PURCHASED LOCALLY TO COMPLETE A CRANE BRIDGE

STRUCTURAL STEEL: All structural steel should be first quality, free from rust and excessive mill scale, and conform to ASTM A 36 .

For the complete drawing identifying all dimensions, material sizes, location of cross shafting, brackets, etc. refer to the following chart:

BRIDGE ASSEMBLY	PAGE
Hand Geared	8
Individual Drive	9
Center Drive	10

BRIDGE BEAMS: For each capacity, span and type of bridge drive select from tables shown on pages $4,5,6 \& 7$.

The I-beam which is selected to be used for the bridge girder must be straight with flanges parallel to each other and flanges 90 degrees to the web. See figure A below.

Figure A

NOTICE

A. All of the tables used in selection of structural steel beams have been produced by our engineering department using well established design guides for this type of crane bridge. IT IS IMPORTANT THAT ALL INSTRUCTIONS BE FOLLOWED AND THAT RECOMMENDED COMPONENT APPLICATION LIMITS NOT BE EXCEEDED.
B. Assembly of beam and channel requires welding. IT IS EXTREMELY IMPORTANT TO THE SAFETY OF THIS BRIDGE THAT THIS WELDING BE DONE BY A COMPETENT WELL TRAINED WELDER. It is our strong recommendation that the welder used in this construction be qualified as prescribed by the American Welding Society (AWS) Specification for Welding Industrial and Mill Cranes D14.1 latest issue.

FABRICATION OF GIRDER FOR BRIDGE BEAM WITH CAPPING CHANNEL

Refer to Figure B. Place channel on supports as shown in Step I. The I-beam is sighted for camber and placed with camber in direction shown in Step II. Weld one end of channel to the I-beam. Clamp, with "C" clamps, the channel to the I-beam flange - provide sufficient " C " clamps so as to hold channel in contact with the I -beam. Weld in accordance
with the weld information given, starting at one end, staggering weld from side-to-side, proceeding to the opposite end without interruption. It is important to stagger weld from side-to-side in order to retain beam straightness. After welding, draw a taut string from end to end of beam as shown. Beam should either be parallel to string or have some camber. Camber should not exceed 1/800 of span.

CROSS SHAFT: For hand geared and center drive cranes, cross shafts are required. The cross shafts are to be 1-3/ 16 diameter AISI 1018 cold drawn steel, with standard mill tolerance of +.000 ", -.002 ". For shaft lengths, refer to the appropriate Bridge Assembly Drawing. (Builder must check that cross shaft couplings clear cross shaft support bearings.)

TRANSFER LATCH: For cranes to be equipped with a transfer latch, all angles welded to the top flange of the girder must be notched as shown in Figure C. Also the " S " and " T " dimensions should be determined from the appropriate Bridge Assembly Drawing.

Figure C

Figure B

A. WARNING

Trolley stops (clip angles) must be installed on both ends of the bridge beam to prevent hoist trolley from running off the end of the beam, which could result in injury to the operator and others and damage to the load and other property.

ASSEMBLING BRIDGE GIRDER TO END TRUCKS

1. Refer to Figure D below.
2. Support bridge girder on level supports with camber side (channel side) up.
3. Layout and scribe the center line (over the web) of the flange at each end of the girder.
4. Layout and scribe span line (90° to web) on top flange of girder. Check " S " and " T " dimensions to span line.
5. Locate and scribe lines locating the center of the truck.
6. Place trucks in position on the girder. Line up girder and truck centerlines. Line up truck on girder span line.
7. Square trucks on top of girder and securely clamp in place. To check the distance between trucks the distances between points 1 P and 4 P and between 2 P and 3 P should equal the span minus $2 \times$ " M ". Refer to the Bridge Assembly drawing for the " M " dimension.
8. To check squareness, use a spring scale on the end of the tape and measure from point 1 P to 3 P and from 2 P to 4 P with the same force on the scale. These dimensions should be within $1 / 32$ " of each other.
9. Check to see that trucks are level and that the wheels are parallel to the bottom flange of the girder. Shim top flange to bottom of truck girder seat plates if required as shown in Figure D.
10. After all checks are completed, weld trucks to girder.

INSTRUCTIONS FOR ASSEMBLING HAND GEARED CRANE BRIDGE

1. Refer to Bridge Assembly drawing page 8.
2. Prepare bridge girder I-beam with capping channel if required (see Figure B, page 12).
3. Follow instructions for assembling bridge girder to end trucks.
4. Bolt cross shaft pillow blocks to short support angles Item (D).
5. Locate and clamp cross shaft support angles (Item (E) \& (F) to the girder.
6. Place the proper number of pillow blocks (with support angles) and couplings on each shaft section. Check to insure that the flange of Item (D) is in correct relationship for later welding to Items (E) or (F). Notice that the separate bearing locking collar has a counterbore on one side. This counterbore fits over the protruding inner race. Place locking collar on shaft accordingly. Place hand chain wheel and guide on the appropriate shaft section and position within 12 " of a bearing support.
7. Set shafting in place, align pillow blocks to the cross shaft support angles and clamp in place.
8. Check horizontal and vertical alignment of the cross shaft by using a taut line. Weld cross shaft support angles

Figure D
to the girder and pillow block support angles to the cross shaft support angles when alignment is complete.
9. Set space between cross shafts to $1 / 8$ ". Position couplings and drill $3 / 8$ " diameter holes thru the shaft and couplings using the holes in one side of the coupling as a guide. (Coupling has a pre-drilled 11/32" hole through one side only.) Shaft and coupling is then secured by hex head bolts with lockwashers and nuts (see Figure 3).
10. Slide bearing locking collars in place next to pillow block. Make certain that the counter bore in collar is fitted over the extended inner race of the bearing. Fasten to shaft with set screw in locking collar.
11. Locate and fasten trolley stop angles (Item (C) to the ends of the girder by drilling 11/16" diameter holes through the web of the girder and fastening with 5/8" diameter bolts and stop nuts.

INSTRUCTIONS FOR ASSEMBLING INDIVIDUAL DRIVE MOTOR DRIVEN CRANE BRIDGE

1. Refer to the Bridge Assembly drawing page 9.
2. Prepare bridge girder I-beam with capping channel if required (see Figure B, page 12).
3. Follow instructions for assembling bridge girder to end trucks, as outlined on page 13.
4. Locate and weld plate (Item (D)) to underside of end truck as shown.
5. Locate and weld diagonal tube (Item (C) to top of girder and plate (D) as shown.
6. Weld tubes (Items (© \& ($®$) to top of girder and plate (D) as shown.
7. Bolt the motor to the gear reducer with four hex head bolts and lockwashers. Bolt the support angles (Item ©) to the gear reducer using four hex head bolts and lock washers. See view C-C of the Bridge Assembly page 9.
8. Place key in truck drive shaft, slide gear reducer into place over drive shaft and weld support angles (Item ©) to side of truck as shown.
9. It is suggested that the electrical enclosure and fused disconnect switch be mounted using tube (Item (F) as a support. Suggested arrangement is shown on the Bridge Assembly drawing.
10. If ballast resistors (optional) are furnished, four holes are provided in the side of the electrical enclosure for mounting.
11. Locate and fasten trolley stop angles (Item (\mathbb{H}) to the ends of the girder by drilling $11 / 16$ " diameter holes through the web of the girder and fastening with $5 / 8^{\prime \prime}$ diameter bolts
and stop nuts.

INSTRUCTIONS FOR ASSEMBLING CENTER DRIVE MOTOR DRIVEN CRANE BRIDGE

1. Refer to the Bridge Assembly drawing page 10.
2. Follow instructions for assembling bridge girder to end trucks, as outlined on page 13.
3. Clamp channel auxiliary girder to end plate of end trucks. Locate as shown on Bridge Assembly drawing. Level top of channel with top flange of bridge girder.
4. Locate and weld plate (Item (G) to underside of truck channel as shown on Bridge Assembly.
5. Position and clamp cross shaft angles (Item (C)) to bridge girder and auxiliary girder as shown on Bridge Assembly.
6. Bolt cross shaft pillow blocks to short support angles (Item (D).
7. Place the proper number of pillow blocks (with support angles) and couplings on each shaft section. Check to insure that the flange of Item (D) is in correct relationship with the cross shaft support angles (Item (C). Notice that the separate bearing locking collar has a counterbore on one side. This counterbore fits over the protruding inner race of the pillow block bearing. Place locking collar on shaft accordingly.
8. Set shafting in place, align pillow blocks to the cross shaft support angles and clamp in place.
9. Weld the cross shaft support angles to the bridge and auxiliary girder.
10. Bolt the motor to the gear reducer with four hex head bolts and lockwashers. Bolt the gear reducer to the drive support channel (Item(J) as shown on the Bridge Assembly drawing.
11. Place key in drive shaft (Item (\mathbb{H}) and slide drive shaft into hollow shaft of the gear reducer. Position drive shaft to extend the same distance either side of the reducer and tighten set screws that hold shaft in place.
12. Locate and clamp center drive support channel (Item (J)) to the bridge girder.
13. Check horizontal and vertical alignment of the cross shaft by using a taut line. Weld pillow block support angles to the cross shaft support angles when alignment is complete.
14. Weld center drive support channel to top of bridge girder.
15. Set space between cross shafts to $1 / 8^{\prime \prime}$. Position couplings and drill $3 / 8^{\prime \prime}$ diameter holes through the shaft and coupling using the holes in the coupling as a guide. (Coupling has a pre-drilled 11/32" diameter hole through
one side only.) Shaft and coupling is then secured by hex head bolts with lockwashers and nuts (see Figure 3).
16. Slide bearing locking collars in place next to pillow blocks. Make sure that the counterbore in collar is fitted over the extended inner race of the bearing. Fasten to shaft with set screw in locking collar.
17. Locate, place and weld diagonal horizontal truss angles (Items (E) \& (F).
18. It is suggested that the electrical enclosure and fused disconnect switch be located off the channel auxiliary girder, and be supported by it.
19. If ballast resistors (optional) are furnished, four holes are provided in the side of the electrical enclosure for mounting.
20. Locate and fasten trolley stop angles (Item (L)) to the ends of the girder by drilling $11 / 16$ " diameter holes through the web of the girder and fastening with $5 / 8^{\prime \prime}$ diameter bolts and stop nuts.

PAINTING

After all welding is completed and prior to installing the cross conductors, wire brush all steel and remove all scale weld splatter, flux and any other foreign matter. Grease spots are to be cleaned using commercially available solvent. Wash with clear water an area six inches either side of all welds to remove flux residue.

The electrical panel must be closed, and areas such as the switch handle, Off-On identification, wheel gear and pinion, any nameplate, etc., must be masked prior to painting.

Any national brand zinc-rich, chromate primer can be used and applied according to the manufacturers directions. Final coat is recommended to be high gloss enamel, especially suited for steel surfaces and as recommended by any national brand paint manufacturer. Application must be in accordance with manufacturers' recommendations.

MARKING

Codes require that the capacity of the bridge be shown on both sides of the crane, legible from the floor. Normal practice for marking is to use capacity in tons. For example: 1 TON, 2 TON, etc. Stencil forms are readily available that may be used with brush on or spray-can paint. Commercially available block letters and numerals with adhesive backing could also be used. Selection of size should be such that the sign can be easily read from the operating floor.

The builder's name shall also be placed on the crane in a prominent location along with a serial number or other means of easy identification.
marking crane and also to check for compliance with local, state and national codes.

CROSS CONDUCTOR ASSEMBLY

Refer to Cross Conductor Arrangement drawing page 16.
A cross conductor system is a means of providing electric current from the main conductors to the moving hoisttrolley.

The type of cross conductor system is a guarded type. Shown on page 16, is a typical type using a figure (8) bar with an insulating cover. Spacing shown does not insure that such spacing will be correct for all hoist-trolley combinations. Responsibility for checking all clearances rests with the builder. The builder is also CAUTIONED to consult with the conductor manufacturer on special applications involving transfer of hoist-trolley with the use of a transfer latch, and also for special conditions involving unusual temperature and environment.

Care should be exercised in balancing the number of conductors on either side of the bridge beam. (This is especially critical with a light capacity hoist-trolley unit.) Control circuit collectors should be 30 Amp. Catalog \#904101.

The main power collectors can be 30 Amp. Catalog \#904101 if the hoist motor is 10 Horsepower or less. If the hoist motor exceeds 10 Horsepower then the 100 Amp. Catalog \#904110 collector must be used.

MAIN COLLECTOR ASSEMBLY

Refer to the Main Collector drawing page 17.

The collectors listed Catalog \#904101 and 904110 are compatible with and will operate only on conductor bars listed as Catalog \#904025 and 904026 furnished from COLUMBUS MCKINNON CORPORATION.The builder must check to ensure that the suggested spacing and location of the conductors will clear all obstructions in the building.

NOTICE

The crane builder and user are responsible for
439855

INSTALLATION OF CRANE BRIDGE

A. WARNING

Be certain that electrical power supply to runway current conductors (if used) is "off" and locked in the open position.

NOTE: Minimum runway beam size allows vertical clearance for bridge wheels between runway beam flanges. Encroachment of flange connections into this area may cause interference.

1. Open End Runway. If one end of the crane runway is open and no interference is encountered the crane bridge can be placed on the end of the runway. First check distance between wheels. The distance between the inside faces of the wheel flanges should be the width of the bottom flange of the runway beam plus $1 / 4^{\prime \prime}$. See Figure E. Note also that the dimensions from the back of the wheels to the side of the truck should be equal as shown in Figure E . If wheel adjustment is required, see paragraph 4. If wheels do not require adjusting, lift crane bridge so that wheels are level with contact surface on runway beam. Carefully move crane bridge onto runway.

A. WARNING

If crane bridge is mounted on an open-end runway rail, then end stops must be installed to prevent crane bridge from running of the end of the runway rail resulting in injury to the operator and others and damages to the load and other property. End stops per trolley stop table on Bridge Assembly Drawing, may be used and installed per instructions given.

Figure E
2. Removable Runway Section. In some installations a removable section of runway may be available. If so, remove runway section, check crane bridge wheel adjustment and install crane bridge as in paragraph 1, and reinstall runway section.
3. Wheel Removal. If the methods previously described are not possible, the crane bridge wheels must be removed. Refer to Figure E, page 17. Loosen nut (A) and bolt (B). Back axle and wheel out to truck side by backing out bolt (B). Locking nut (A) may be used to jack out wheel and axle. With external retaining ring pliers with right angle points, remove retaining ring (D). Hold wheel to keep from falling, remove bolt(B) and remove axle. Lift crane bridge to runway level and secure. Reinstall wheels in reverse order of removal. See paragraph 4 for wheel adjustment.
4. Wheel Adjustment. Measure the width of the bottom flange of the runway beam and add $1 / 4^{\prime \prime}$. This is to be the dimension between the inside faces of the wheel flanges as shown in Figure E. Lift or jack up truck from the runway beam (to remove weight from the wheels) and adequately secure. Loosen locking nut (A) and adjust bolt (B) on a set of wheels to get the correct dimension between wheel flanges and to maintain equal dimensions from the back of the wheel to the side of the truck as shown in Figure E. After wheels are correctly adjusted tighten lock nut (A) against axle plate (C) making certain that bolt (B) is also tight to axle plate (C). After all wheels are adjusted, lower truck to runway and check clearance between wheel flange and edge of beam ($1 / 8^{\prime \prime}$).
5. On a hand geared or a motor driven crane, loosen the two set screws holding each pinion in the geared truck. If LOCTITE has been used, some heat may be necessary to loosen set screws. Align the teeth of the pinions with the geared wheels and tighten the set screws.

NOTICE

It is recommended that for positive locking of the drive pinions (Figure 1, Ref. No. 18) on hand geared and motor driven end trucks, the following procedure be used (after wheel adjustment is complete).
A. Make sure the area on the shaft under the drive pinions in their adjusted position is free from oil and dry. Use a suitable non-oily solvent or LOCTITE Safety Solvent 755.
B. Align the teeth of the pinions with the geared wheels and lightly tighten the set screws which engage the pinion keys.
C. Remove the other set screws and rotate the pinion shaft until these set screw holes are above horizontal.
D. Apply LOCTITE 290 in the set screw holes until it can be seen flowing from the pinion bore at the shaft.
E. Replace set screws and tighten fully. For maximum locking, use a new, high quality $1 / 8^{\prime \prime}$ hex key and apply pressure at the end of the longer arm until it bends about 30°.
F. Loosen set screws over keys, apply a few drops of LOCTITE 290 and retighten as in Step E above.

A. WARNING

The end trucks of this crane were equipped with safety lugs held by high strength bolts when shipped. Be certain that these safety lugs are firmly bolted in place prior to crane use.

NOTE: It is suggested that hoist and trolley be installed on crane bridge at this time so all wiring and connections can be completed.

A. Warning

This equipment must be effectively grounded according to the National Electrical Code, or other applicable codes. If the grounding method used is through the truck wheels, then each section of runway must be grounded by metal-to-metal connection to the building ground. Certain environments may prevent proper grounding by this means and in this case a separate grounding conductor should be provided.

FUSE AND MAINLINE DISCONNECT PANELS

Mainline disconnect panels and fuse bridge control panels are provided as options to assist users in complying with OSHA codes. When ordering with crane, they will be completely installed inside of electrical enclosures.

Electrical service is to be connected to crane equipped with fuse panels and mainline disconnect panels as shown in wiring diagram. Wiring diagrams are in Part No. 113533-74.

4 caution

Power supply must be same voltage, frequency and phase as specified on crane motor nameplate

LUBRICATION

a. Wheel bearings are permanently lubricated and require no additional lubricant.
b. Drive wheel gears are to be lubricated with an open type gear grease which is heavy, plastic, extreme pressure and tacky; such as MOBILTAC 275 NC or equal.
c. The hollow shaft worm gear reducer lubricant should be changed every year or 2000 hours of service for moderate usage. The lubricant should be changed more frequently if the service is more severe. Use one pint of AGMA lubricant number 7 , compounded, if the ambient temperature is 15° to $60^{\circ} \mathrm{F}$ or AGMA lubricant number 8, compounded, if the ambient temperature is 50° to $125^{\circ} \mathrm{F}$.
d. It is recommended that the areas of the cross shaft covered by gear reducers, bearings and couplings be coated with FEL-PRO C5-A, or equal, anti-seize lubricant.

Before crane operation the vent plug must be in the proper location in the gear reducer. The vent plug replaces the pipe plug in the highest location on the end of the gear reducer (see Figure 5).

OPERATION

Prior to placing the crane into service, OSHA requires that the user perform and record certain tests including proof loading of the crane. Refer to ANSI B30.11 for information concerning these requirements.

Each operator should be thoroughly instructed in the operation of the crane, its' limitations both in capacity and bridge and hoist travel, as well the cranes' safety features.

INSPECTION

The crane should be inspected at the beginning of each shift. All functional mechanisms should be in good working order. Check limit switches, brakes, electrical equipment, and other SAFETY devices. Check crane operation without load. Any unusual sounds, vibrations, anything wrong or apparently wrong should be reported to the operators' supervisor immediately. Inspect hoist and trolley as recommended in manufacturer's hoist and trolley manual.

A. WARNING

Do not operate a crane, hoist or trolley having unusual vibrations, sounds, warnings or with anything wrong or apparently wrong. Danger may be present that the crane operator cannot see. Determine and correct cause of unusual conditions and make certain the crane can be operated SAFELY.

Complete inspection of the crane is to be performed at least every six months and more frequently when conditions require.

OPERATING PRECAUTIONS

WARNING

These crane bridges are not designed nor intended to be used for support or transport of people or for transporting loads over people.

Safe operation of an overhead hoist is the operator's responsibility. Listed below are some basic rules that can make an operator aware of dangerous practices to avoid and precautions to take for his own safety and the safety of others. Observance of these rules in addition to frequent examinations and periodic inspection of the equipment may save injury to personnel and damage to equipment.

DO NOT load bridge beyond rated capacity.
DO NOT subject bridge to side loads. Always center trolley over load when hoisting.

DO NOT stand and DO NOT cause or allow others to stand or get under any load the bridge is supporting. DO keep clear, and make sure others keep clear, of any load the bridge is supporting.

DO NOT attempt to operate crane bridge before completing tests and adjustments.

DO NOT ram bridge into end stops, other bridge, or any obstruction on beam. Improper and careless operation can result in a hazardous condition for operator and load.

ALWAYS be sure load is clear of obstruction before traversing load.

If crane bridge is mounted on an open-end runway rail, then end stops must be installed to prevent crane bridge from running off the end of the runway rail resulting in injury to the operator and others and damages to load and other property. End stops per trolley stop table in Bridge Assembly Drawing may be used and installed per instructions given.

Refer to hoist and trolley instruction manuals for safety warnings on hoist and trolleys.

Read and comply with ANSI B30.11 Monorails and Underhung Cranes, latest edition.

Read and comply with all local, state and national safety codes.

MAINTENANCE

Inspect the bridge on a regular maintenance schedule. Check to make sure wheel axle adjustment bolts and all connections are tight. Check wheel tread surfaces for wear or damage. Check truck sides for any evidence of overload or damage. Replace any worn or damaged parts using only factory approved replacement parts.

REPLACEMENT PARTS

The following parts list and illustrations cover standard model COLUMBUS MCKINNON CORPORATION cranes. Typical units are used as the basis for the exploded parts illustrations; therefore, certain variations may occur from the parts information given. For this reason always give the catalog number, model number, motor horsepower, voltage, phase and frequency when ordering replacement parts. For motors, gearboxes, and electrical components, give complete nameplate data.

The factory recommends complete replacement of the motor or gearbox. Gearbox service is available, however, from your local authorized COLUMBUS MCKINNON CORPORATION repair station.

The numbers assigned to the parts of our various assemblies in our parts list are not the part numbers used in manufacturing the part. They are identification numbers, that when given with the catalog number, permits us to identify, select or manufacture, and ship the correct part needed.

INDEX OF PARTS ILLUSTRATIONS		
Title	Figure No.	$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
Geared Truck (Catalog Numbers - See Figure 1) ...	1	20
Cross Shaft Support (Catalog Number 904625) ...	2	22
Coupling (Catalog Number 8280) ...	3	22
Hand Chain Drive (Catalog Numbers 8282 and 913115)	4	23
Gear Reducer and Motor (Catalog Numbers - See Figure 5) ..	5	24
Electrical Enclosure (Catalog Numbers - See Figure 6) ...	6	26

12729C
Figure 1. Geared Truck. (Catalog Numbers 913101, 913101W1, 913101W2, 913102, 913102W1, 913102W2, 913106, 913106W1, 913106W2, 913107, 913107W1 and 913107W2).

Figure 1. Geared Truck. (Catalog Numbers 913101, 913101W1, 913101W2, 913102, 913102W1, 913102W2, 913106, 913106W1,913106W2,913107,913107W1 and913107W2) (Continued).

Ref. No.	Part Number		Description	Qty. Req'd
	6-1/2" Wheels	$\begin{gathered} 8 " \\ \text { Wheels } \end{gathered}$		
1	STK-101	STK-102	DropLugs	4
2			High Strength Hex Head Bolt - SAE Grade 5	8
	STK-103	--	3/4-10 $\times 1-3 / 4$	
	--	STK-104	1-8 $\times 2$	
3	STK-105	--	Spring Lockwasher (3/4)	8
	--	STK-106	Spring Lockwasher (1)	8
4			Hex Head Tap Bolt - SAE Grade 5	4
	STK-107	--	3/4-10 $\times 4-1 / 4$	
	--	STK-108	$1-8 \times 4-1 / 4$	
5	STK-109	--	Heavy Hex Jam Nut (3/4-10)	4
	--	STK-110	Heavy Hex Jam Nut (1-8)	4
6	STK-111	STK-112	Wheel Axle Weldment	4
7	STK-113	STK-114	Retaining Ring	4
8	STK-115	STK-116	Ball Bearing	8
9	STK-117	STK-118	PlainWheel	2
10	STK-119	STK-120	Retaining Ring	4
11			TruckWeldment 6'-6"Wheelbase	1
	STK-121	--	For 4-5/8" thru 6" Runway Beam Flange Width	
	STK-122	--	For 6-1/8" thru 8-1/2" Runway Beam Flange Width	
	STK-123	--	For 8-5/8" thru 11" Runway Beam Flange Width	
	--	STK-124	For 5" thru 7" Runway Beam Flange Width	
	--	STK-125	For $7-1 / 8$ " thru $9-1 / 2^{\prime \prime}$ Runway Beam Flange Width	
	--	STK-126	For 9-5/8" thru 12" Runway Beam Flange Width 8'-0"Wheel base	
	STK-127	--	For 4-5/8" thru 6" Runway Beam Flange Width	
	STK-128	--	For 6-1/8" thru 8-1/2" Runway Beam Flange Width	
	STK-129	--	For 8-5/8" thru 11" Runway Beam Flange Width	
	--	STK-130	For 5" thru 7" Runway Beam Flange Width	
	--	STK-131	For $7-1 / 8$ " thru $9-1 / 2^{\prime \prime}$ Runway Beam Flange Width	
	--	STK-132	For 9-5/8" thru 12" Runway Beam Flange Width	
12	STK-133	STK-134	GearedWheel	2
13	STK-135	STK-135	Square Keys	2
14	STK-136	STK-136	Hex Socket Head Set Screws	4
15			Pinion Shaft	1
	STK-137	--	For 4-5/8" thru 6" Runway Beam Flange Width	
	STK-138	--	For 6-1/8" thru 8-1/2" Runway Beam Flange Width	
	STK-139	--	For 8-5/8" thru 11" Runway Beam Flange Width	
	--	STK-140	For 5" thru 7" Runway Beam Flange Width	
	--	STK-141	For $7-1 / 8$ "thru $9-1 / 2$ " Runway Beam Flange Width	
	--	STK-142	For 9-5/8" thru 12" Runway Beam Flange Width	
16	STK-143	STK-143	Ball Bearing with Snap Ring	2
17	STK-144	STK-144	Retaining Ring	1
18	STK-145	STK-145	Pinion	2
19	STK-146	STK-146	Machinery Bushing	
20	STK-147	STK-147	Clamp Collar	,

Figure 2. Cross Shaft Bearing Assembly. (Catalog Number 904625).

Ref. No.	Part Number	Description	Qty. Req'd
1	STK-201	Pillow Block	1
2	--	Locking Collar (Included with Pillow Block)	1
3	STK-202	Hex Head Bolt (1/2-13 x 1-1/4)	2
4	STK-203	Spring Lockwasher (1/2)	2
5	STK-204	Hex Nut (1/2)	2

Figure 3. Coupling. (Catalog Number 8280).

Ref. No.	Part Number	Description	Qty. Req'd	
1	STK-301	Hex Head Fit Bolt		2
2	STK-302	Spring Lockwasher (3/8)		2
3	STK-303	Heavy Semi-Finish Hex Nut		2
4	STK-304	Coupling	1	

Figure 4. Hand Chain Drive. (Catalog Numbers 8282 and 913115).

Ref. No.	Part Number	Description	Qty. Req'd
1		Catalog Number 8282 Consists of Ref. Nos. 1 and 2: HandChain	
2	STK-1105	Connecting Link	36 ft.
		Catalog Number 913115 Consists of Ref. Nos. 3 thru 5:	
3	STK-1101	Square Head Set Screw, Cup Point (3/8-16 $\times 1$ Pltd.)	1
4	STK-401	Hand Chain Wheel	1
5	STK-402	ChainWheel Guide	1

NOTES
\qquad

12733C
Figure 5. Gear Reducer. (Catalog Numbers 913108 thru 913112) and Motor (Catalog Numbers 905148 thru 905150, $905381,905382,905394$ thru $905396,913120,913121,913124,913125,913128$ thru 913134,913139 thru 913141 and 913145thru913147).

Ref. No.	Key Number	Description	Qty. Req'd
		Catalog Numbers 913108 thru 913112 Consist of Ref. Nos. 1 thru 6:	
1	STK-501	Key	1
2	STK-502	Self-Locking Socket Head Cap Screw (5/16-18 x 7/8)	4
3	STK-503	Spring Lockwasher (5/16)	4
4		Gear Reducer	1
	STK-504	5:1 Gear Ratio (Cat. No.913108)	
	STK-505	7.5:1 Gear Ratio (Cat. No.913109)	
	STK-506	10:1 Gear Ratio (Cat. No.913110)	
	STK-507	15:1 Gear Ratio (Cat. No.913111)	
	STK-508	20:1 Gear Ratio (Cat. No.913112)	
5	STK-509	Hex Head Bolt ($3 / 8-16 \times 1$)	4
6	STK-510	Spring Lockwasher (3/8)	4
		Catalog Numbers $913120,913121,913124,913125,913128,913129$,	
		913132 thru 913134, 913139 thru 913141 and 913145 thru 913147	
		Consist of Ref. Nos. 7 and 8:	
7	STK-511	Key	1

Page 24

Figure 5. Gear Reducer. (Catalog Numbers 913108 thru 913112) and Motor (Catalog Numbers 905148 thru 905150, 905381, 905382,905394 thru $905396,913120,913121,913124,913125,913128$ thru 913134,913139 thru 913141 and 913145 thru 913147) (Continued).

Ref. No.	$\begin{gathered} \text { Key } \\ \text { Number } \end{gathered}$	Description	Qty. Req'd
8		Motor: Single Speed: 208-230/460-3-60: 1/2 HP, 1800 RPM (Cat. No. 905381) 3/4 HP, 1800 RPM (Cat. No. 913120) 1 HP, 1800 RPM (Cat. No. 913124) 1-1/2 HP, 1800 RPM (Cat. No. 913128) 2 HP, 1800 RPM (Cat. No. 913130) 575-3-60: 1/2 HP, 1800 RPM (Cat. No. 905382) $3 / 4$ HP, 1800 RPM (Cat. No. 913121) 1 HP, 1800 RPM (Cat. No. 913125) 1-1/2 HP, 1800 RPM (Cat. No. 913129) 2 HP, 1800 RPM (Cat. No. 913131) Two Speed: 208-230-3-60: . 5 / . 17 HP, 1800 RPM (Cat. No. 905394) $.75 / .25 \mathrm{HP}, 1800$ RPM (Cat. No. 913132) $1 / .33$ HP, 1800 RPM (Cat. No. 913139) 1.5 / .5 HP, 1800 RPM (Cat. No. 913145) $2 / .67$ HP, 1800 RPM (Cat. No. 905148) 460-3-60: . $5 / .17$ HP, 1800 RPM (Cat. No. 905395) $.75 / .25 \mathrm{HP}, 1800$ RPM (Cat. No. 913133) $1 / .33$ HP, 1800 RPM (Cat. No. 913140) 1.5 / .5 HP, 1800 RPM (Cat. No. 913146) 2 /. 67 HP, 1800 RPM (Cat. No. 905149) 575-3-60: . $5 / .17$ HP, 1800 RPM (Cat. No. 905396) .75 / .25 HP, 1800 RPM (Cat. No. 913134) $1 / .33$ HP, 1800 RPM (Cat. No. 913141) 1.5 /.5 HP, 1800 RPM (Cat. No. 913147) $2 / .67$ HP, 1800 RPM (Cat. No. 905150)	1
	STK-527		
	STK-512		
	STK-513		
	STK-514		
	STK-528		
	STK-529		
	STK-515		
	STK-516		
	STK-517		
	STK-530		
	STK-531		
	STK-518		
	STK-519		
	STK-520		
	STK-532		
	STK-533		
	STK-521		
	STK-522		
	STK-523		
	STK-534		
	STK-535		
	STK-524		
	STK-525		
	STK-526		
	STK-536		

NOTES

\qquad

Figure 6. Electrical Enclosure. (Catalog Numbers 905385, 905386, 905387, 905397, 905398, 905399, 913155 thru 913158 and 913165 thru 913169).

Ref. No.	Key Number	Description	Qty. Req'd
,	STK-1306	Hex Nut (1/4-20)	2
2	STK-1307	Spring Lockwasher (1/4)	2
3	STK-601	Hex Head Bolt (1/4-20 x 2-1/2)	2
4	STK-1309	Electrical Enclosure	1
5		Transformer	1
	STK-602	208/115V or $230 / 115 \mathrm{~V}$	
	STK-1313	460/115V	
	STK-1314	575/115V	
6	STK-1317	Mainline Contactor	1
7	STK-1319	Accelerating Contactor (For 2 Speed Cranes Only)	1
8	STK-1320	Reversing Contactor	1
9	STK-603	Terminal Board	1
10		Fuses	3
	STK-604	6A, 250V	
	STK-605	10A, 250V	
	STK-606	15A,250V	
	STK-1324	3A, 600V	
	STK-607	6A, 600 V	

Figure 6. Electrical Enclosure. (Catalog Numbers 905385, 905386, 905387, 905397, 905398, 905399, 913155 thru 913158 and 913165 thru 913169) (Continued).

Ref. No.	Key Number	Description	Qty. Req'd
11		Fuse Base	1
	STK-1325	30A, 250V	
	STK-1326	30A, 600V	
12	STK-1328	Fuse, Fuse Holder and Wire Assembly (1/2A, 115V)	1
	STK-1330	*Fuse Only (1/2A, 250V Rating)	1

* Replacement fuses are standard automotive type and may be purchased locally.

NOTES

Recommended Spare Parts for
 Your Chain Hoist

Certain parts of your crane will, in time, require replacement under normal wear conditions. It is suggested that the following parts be purchased for your crane as spares for future use.

1 Set of Wheels
1 Set of Wheel Bearings
1 Set of Fuses
1 Set of Contactors
NOTE: When ordering parts always furnish Catalog Number and Part Number.
Parts for your crane are available from your authorized repair station. For the location of your nearest repair station, write:

Crane
Source

P.O. BOX 1000
Forrest City, Arkansas 72335
800 999-6318 Phone 800 766-0223 Fax

414 West Broadway Avenue
P.O. Box 769
Muskegon, Michigan 49443-0769
(800) 742-9269 Phone
(800) 742-9270 Fax

53-D Cowansview Road
Cambridge, Ontario N1R 7L2
(519) 621-3201 Phone
(519) 621-3125 Fax

WARRANTY

WARRANTY AND LIMITATION OF REMEDY AND LIABILITY

A. Seller warrants that its products and parts, when shipped, and its work (including installation, construction and start-up), when performed, will meet applicable specifications, will be of good quality and will be free from defects in material and workmanship. All claims for defective products or parts under this warranty must be made in writing immediately upon discovery and, in any event, within one (1) year from shipment of the applicable item unless Seller specifically assumes installation, construction or start-up responsibility. All claims for defective products or parts when Seller specifically assumes installation, construction or start-up responsibility, and all claims for defective work must be made in writing immediately upon discovery and, in any event, within one (1) year from completion of the applicable work by Seller, provided, however, all claims for defective products and parts made in writing no later than eighteen (18) months after shipment. Defective items must be held for Seller's inspection and returned to the original f.o.b. point upon request. THE 'FOREGOING IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES WHATSOEVER, EXPRESS, IMPLIED AND STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
B. Upon Buyer's submission of a claim as provided above and its substantiation, Seller shall at its option either (i) repair or replace its product, part or work at either the original f.o.b. point of delivery or at Seller's authorized service station nearest Buyer or (ii) refund an equitable portion of the purchase price.
C. This warranty is contingent upon Buyer's proper maintenance and care of Seller's products, and does not extend to normal wear and tear. Seller reserves the right to void warranty in event of Buyer's use of inappropriate materials in the course of repair or maintenance, or if Seller's products have been dismantled prior to submission to Seller for warranty inspection.
D. The foregoing is Seller's only obligation and Buyer's exclusive remedy for breach of warranty, and is Buyer's exclusive remedy hereunder by way of breach of contract, tort, strict liability or otherwise. In no event shall Buyer be entitled to or Seller liable for incidental or consequential damages. Any action for breach of this agreement must be commenced within one (1) year after the cause of action has occurred.

